SABCS Highlights 2015 Medical Oncology

Helen K. Chew, MD
Professor of Medicine
Division of Hematology/Oncology

Objectives

To present "clinically relevant" abstracts in:

- 1. Hormone receptor positive and HER2 negative breast cancer
- 2. HER-2 positive breast cancer
- 3. Triple negative breast cancer

PIK3CA Status in Circulating Tumor DNA Predicts Efficacy of **Buparlisib Plus Fulvestrant in Postmenopausal Women With** Endocrine-resistant HR+/HER2- Advanced Breast Cancer: First Results From the Randomized, Phase III BELLE-2 Trial

José Baselga,¹ Seock-Ah Im,² Hiroji Iwata,³ Mark Clemons,⁴ Yoshinori Ito,⁵ Ahmad Awada,⁵ Stephen Chia,² Agnieszka Jagiello-Gruszfeld,⁵ Barbara Pistilli,⁵ Ling-Ming Tseng,¹0 Sara Hurvitz,¹¹ Norikazu Masuda,¹² Javier Cortés,¹³ Michele De Laurentiis,¹⁴ Carlos L. Arteaga,¹³ Zefei Jiang,¹⁵ Walter Jonat,¹² Soulef Hachemi,¹³ Sylvie Le Mouhaër,¹³ Emmanuelle Di Tomaso,¹⁵ Patrick Urban,²0 Cristian Massacesi,¹⁵ Mario Campone³¹

**Memorial Sloan Kettering Cancer Center, New York, N.Y. **Seoul National University College of Medicine, Seoul, Republic of Korea;

**3Aichi Cancer Center, Nagoya, Japan; **Ottawa Hospital Research Institute, Ottawa, Canada;

**Cancer Institute Hospital of the Japanese Foundation for Cancer Research, Tokyo, Japan; **Institut ulos Bordet, Brussels, Belgium;

**BC Cancer Agency, Vancouver, Canada; **Maria SAdowska-Curle Memorial Cancer Centre and Institute of Oncology (MCMCC), Warsaw, Poland;

**Ospedale of Macerata, Macerata, Italy; **Taipei Veterans General Hospital, Taipei, Taiwan; **ULCLA Jonsson Comprehensive Cancer Center, Los Apaiges, CA;

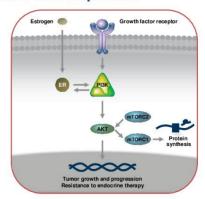
**National Hospital Organization Osaka National Hospital, Osaka, Japan; **Valid Hebron Institute of Oncology (VHIC), Barcelons, Spaing, China;

**Italituto Nazionale Tumori Fondazione G. Pascale, Napies, Italy; **SVanderbilt-Ingram Cancer Center, Nashiville, TN; **Beling 307 Hospital of PLA, Beljing, China;

**Italituto Nazionale Tumori Fondazione G. Pascale, Napies, Italy; **SVanderbilt-Ingram Cancer Center, Nashiville, TN; **Beling 307 Hospital of PLA, Beljing, China;

**Italituto Nazionale Tumori Fondazione G. Pascale, Napies, Italy; **SVanderbilt-Ingram Cancer Center, Nashiville, TN; **Beling 307 Hospital of PLA, Beljing, China;

**Italituto Nazionale Tumori Fondazione G. Pascale, Napies, Italy; **SVanderbilt-Ingram Cancer Center, Nashiville, TN; **Beling 307 Hospital of PLA, Beljing, China;


**Italituto Nazionale Tumori Fondazione G. Pascale, Napies, Tancer Statuse, Tancer Statuse, Totalitute Statuse, Totalitute, Tota

This presentation is the intellectual property of the author/presenter. Contact them at baselgaj@mskcc.org for permission to reprint and/or distribute

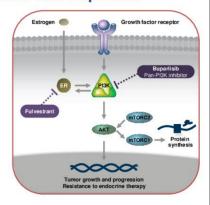
San Antonio Breast Cancer Symposium - December 8-12, 2015

Rationale for Combination of Fulvestrant With Buparlisib

- The PI3K/mTOR pathway is the most frequently altered oncogenic pathway in ER+ breast cancer. *PIK3CA* mutations are present in approximately 35% of ER+ breast cancer1
- PI3K/mTOR pathway activation is a hallmark of HR+/HER2- breast cancer cells that have developed resistance to endocrine therapy^{2,3}
- PI3K inhibitors upregulate ER expression and transcriptional activity2
- Therefore, dual blockade of the PI3K/mTOR and ER pathways may act synergistically and help overcome resistance to endocrine therapies^{2,4,5}

ER, estrogen receptor; HER2-, human epidermal growth factor receptor 2 negative; HR+, hormone receptor-positive; mTOR, mammalian target of rapamycin; mTORC, mammalian target of rapamycin complex; Pi3K, phosphatidylinositiol 3-kinase.

1. The Cancer Genome Altas Network. Nature. 2012;49:061-70; 2. Bosch A, et al. Sci Transl Med. 2015;7:283ra51; 3. Miller TW, et al. Cancer Discov. 2011;1:338-351;
4. Fox EM, et al. Front Oncol. 2012;2:145; 5. Yardley D, et al. Adv Ther. 2013;30:370-884.


ntation is the intellectual property of the author/presenter. Contact them at baselgaj@mskcc.org for perm

Rationale for Combination of Fulvestrant With Buparlisib

Buparlisib (BKM120) is an oral pan-class I PI3K inhibitor that targets all four isoforms of PI3K $(\alpha, \beta, \gamma, \delta)^1$

PI3K Isoform	а	β	γ	δ
IC _{so} , nM	52	166	262	116

- Buparlisib has demonstrated preliminary clinical activity in combination with fulvestrant²
- BELLE-2 is the first randomized Phase III study to assess the safety and efficacy of a pan-PI3K inhibitor combined with fulvestrant in HR+/HER2- advanced breast cancer

ER, estrogen receptor; HER2-, human epidermal growth factor receptor 2 negative; HR+, hormone receptor-positive; mTOR, mammalian target of rapamycin; mTORC, mammalian target of rapamycin complex; Pi3K, phosphatidylinositol 3-kinase.

1. Maira SM, et al. Mol Cancer Ther. 2012;11:317–328; 2. Ma CX, et al. Clin Cancer Res. 2015;pii:1745 [ePub ahead of print].

BELLE-2 Study Design and Endpoints Primary Endpoints Postmenopausal women with HR+/HER2-• PFS in the full population locally advanced or metastatic breast cancer PFS in the main population (PI3K activated and non-activated, excluding status unknown*) that progressed on/after AI therapy N=1147 • PFS in the PI3K activated group* (PIK3CA mutation and/or PTEN loss) Key Secondary Endpoint Randomization (1:1) Other Secondary Endpoints Overall response rate · Clinical benefit rate Buparlisib (100 mg/day) Placebo · Safety, pharmacokinetics, quality of life + fulvestrant (500 mg) + fulvestrant (500 mg) **Exploratory Endpoint** n=576 n=571 • PFS by ctDNA PIK3CA mutation status BELLE-2: ClinicalTrials.gov NCT01610284. N, aromatase inhibitor; BEAMing, beads, emulsification, amplification, and magnetics; ctDNA, circulating tumor DNA; HER2—, human epidermal growth factor receptor 2 negative; HRs, hormone receptor-positive; PFS, progression-free survivat; PISK, phosphatdy/inositol 3-kinase.

PISK pathway activation (activation, on-activated, unknown) was assessed in aromatival tumor tissue provided at screening, defined as PIKSCA mutation by Sanger sequencing (any nutations in exons 1, 7, 9, or 20) and/or loss of PTEN expression by immunohistochemistry (1+ expression in <10% of cells); †ctDNA PIKSCA status was assessed by BEAMing technology. al property of the author/presenter. Contact them at baselgaj@mskcc.org for permission to reprint and/or distribute.

BELLE-2 Key Inclusion and Exclusion Criteria

Key Inclusion Criteria

Postmenopausal women with ER+ and/or PgR+ and HER2- inoperable locally advanced or metastatic breast cancer

- Disease progression on/after AI therapy:
 - Recurrence during or ≤12 months from end of adjuvant AI therapy
 - Progression on AI therapy for advanced/metastatic breast cancer
- Measurable disease or non-measurable lytic or mixed bone lesions (RECIST v1.1)
- Tumor tissue for analysis of PI3K-related biomarkers

Key Exclusion Criteria

- Prior therapy with a PI3K, AKT, or mTOR inhibitor, or fulvestrant
- More than one prior chemotherapy line for metastatic disease
- History of, or active, anxiety, depression, or other major psychiatric disorders (measured using validated questionnaires)

Al, aromatase inhibitor; ER+, estrogen receptor-positive; HER2-, human epidermal growth factor receptor 2 negative; mTOR, mammalian target of rapamycin; PgR+, progesterone receptor-positive; PI3K, phosphatidylinositol 3-kinase; RECIST, Response Evaluation Criteria in Solid Tumors.

This presentation is the intellectual property of the author/presenter. Contact them at baselgaj@mskcc.org for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium - December 8-12, 2015

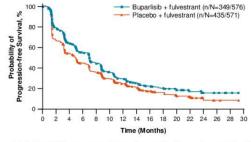
Patient Demographics and Disease Characteristics

Characteristic	Buparlisib + Fulvestrant (n=576)	Placebo + Fulvestrant (n=571)
Median age, years (range)	62 (29–90)	61 (31–90)
ECOG performance status, %		
0	57.8	60.2
1	40.1	37.0
Hormone receptor status, %		
ER+	99.1	98.6
PgR+	74.8	74.1
PI3K pathway activation status, %		
Activated	32.6	32.2
Non-activated	41.5	42.0
Unknown	25.9	25.7
Visceral disease present, %	59.2	59.0
Prior therapy in metastatic setting, %		
Any hormonal therapy	72.6	75.1
Any aromatase inhibitors	69.4	71.5
Any chemotherapy	24.5	31.0
Prior lines of hormonal therapy in metastatic	setting, %	
0	27.4	24.9
1	53.1	52.7
≥2	19.4	22.4

ECOG, Eastern Cooperative Oncology Group; ER, estrogen receptor; PgR, progesterone receptor; Pl3K, phosphatidylinositol 3-kinase.

This presentation is the intellectual property of the author/presenter. Contact them at baselgal@mskcc.org for permission to reprint and/or distributed and the intellectual property of the author/presenter.

BELLE-2 Safety Profile Was Characterized by Transaminitis, Hyperglycemia, Rash, and Mood Disorders

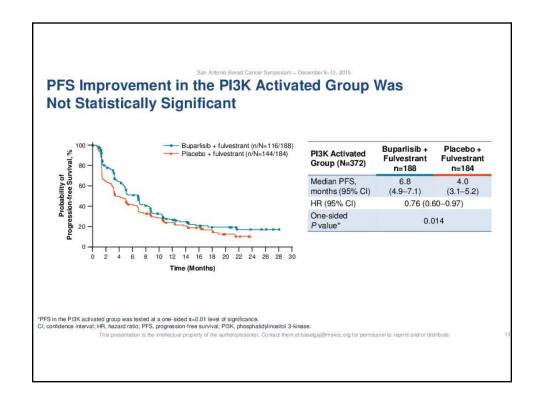

	Bup	arlisib + Fulvest n=573	rant	PI	ant	
Adverse event, %	All grades	Grade 3	Grade 4	All grades	Grade 3	Grade 4
Total	99.5	63.2	14.1	93.0	27.4	4.6
Increased ALT	40.1	18.7	6.8	6.8	1.1	0
Increased AST	37.3	15.0	3.0	9.3	2.8	0
Hyperglycemia	43.1	15.2	0.2	7.7	0.2	0
Rash	32.1	7.7	0.2	6.3	0	0
Anxiety	22.3	5.2	0.2	8.2	0.9	0
Fatigue	31.9	4.9	0	23.9	1.6	0
Depression	26.2	3.7	0.7	8.9	0.4	0
Diarrhea	34.2	3.7	0	14.6	1.1	0
Asthenia	20.1	2.8	0	10.5	1.1	0
Stomatitis	21.6	2.1	0	6.5	0.5	0
Nausea	38.7	1.7	0	23.2	1.4	0
Decreased appetite	29.8	1.6	0	11.1	0.2	0

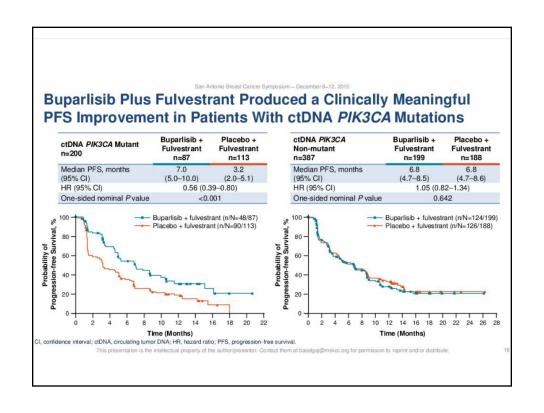
- · Serious adverse events occurred in 23.4% of patients in the buparlisib arm vs 15.8% in the placebo arm
- 12 on-treatment deaths (2.1%) were reported in each arm in the full population, the majority due to disease progression

ALT, alanine aminotransferase; AST, aspartate aminotransferase.

This presentation is the intellectual property of the author/presenter. Contact them at baselgaj@mskcc.org for permission to reprint and/or distribute.

BELLE-2 Met the Primary Endpoint for PFS Improvement in the Full Population


Full Population (N=1147)	Buparlisib + Fulvestrant n=576	Placebo + Fulvestrant n=571	
Median PFS, months (95% CI)	6.9 (6.8–7.8)	5.0 (4.0–5.2)	
HR (95% CI)	0.78 (0.6	67-0.89)	
One-sided P value	<0.001		


- A similar PFS improvement was observed in the main population (HR 0.80 [95% CI: 0.68–0.94]; one-sided P value 0.003)
- Follow-up for OS analysis is ongoing, with a pre-specified target of 588 deaths in the full population
 - At the time of primary PFS analysis, OS data were immature (281 deaths in the full population), with a trend in favor of the buparlisib arm

CI, confidence interval; HR, hazard ratio; OS, overall survival; PFS, progression-free survival.

This presentation is the intellectual property of the authoripresenter. Cont

This presentation is the intellectual property of the author/presenter. Contact them at baselgaj@mskcc.org for permission to reprint and/or distribute

Conclusions

- The BELLE-2 study met its primary endpoint, demonstrating a modest PFS improvement for combined buparlisib and fulvestrant in postmenopausal women with HR+/HER2- advanced breast cancer that had progressed after prior AI therapy
- Frequent discontinuations due to adverse events reduced treatment duration in the buparlisib arm, potentially limiting the efficacy of combination therapy
- Patients with tumors harboring PIK3CA mutations detected in ctDNA performed poorly on fulvestrant monotherapy, achieving a clinically meaningful PFS improvement with the combination
 - 3.8 month PFS improvement was supported by higher response rates (18.4% vs 3.5%) in this patient population
- The BELLE-2 study suggests that assessment of PIK3CA mutations in ctDNA may help select patients who would benefit from adding a PI3K inhibitor to endocrine therapy
- Phase III studies with PI3Kα-selective inhibitors are underway to confirm the predictive value of PIK3CA mutations detected in ctDNA and tumor tissue

This presentation is the intellectual property of the author/presenter. Contact them at baselgai@mskcc.org for permission to reprint and/or distribute.

How does this change clinical practice?

- The BELLE-2 trial is the first randomized trial to show a benefit to targeting the PI3K pathway in advanced cancer. However, the effect was modest in the entire population and not significant in the tumor PI3K activated group.
- PFS by ctDNA by PIK3CA mutation status was an exploratory endpoint and further confirmatory data is needed.

A phase III trial of adjuvant capecitabine in breast cancer patients with HER2-negative pathologic residual invasive disease after neoadjuvant chemotherapy (CREATE-X/JBCRG-04)

Capecitabine for REsidual cancer as Adjuvant Therapy

Lee S-J¹, Toi M², Lee E-S³, Ohtani S⁴, Im Y-H⁵, Im S-A⁶, Park B-W⁷, Kim S-B⁸, Yanagita Y⁹, Takao S¹⁰, Ohno S¹¹, Aogi K¹², Iwata H¹³, Kim A¹⁴, Sasano H¹⁵, Yokota I¹⁶, Ohashi Y¹⁷ and Masuda N¹⁸

³Yeungnam University Hospital; ²Kyoto University Hospital; ³National Cancer Center; ⁴Hiroshima City Hospital; ⁵Samsung Medical Center; ⁵Seoul National University Hospital; ⁵Severance Hospital, Yonsei University College of Medicine; ⁵Asan Medical Center; ³Gunma Prefectural Cancer Center; ¹⁰Hoygo Cancer Center; ¹¹National Kyusyu Cancer Center; ¹²NHO Shikoku Cancer Center; ¹³Cancer Center; ¹⁴Korea University Gro Hospital; ¹⁵Tohoku University; ¹⁶Kyoto Prefectural University of Medicine; ¹²Chu University and ¹³NHO Osaka National Hospital

This presentation is the intellectual property of the presenter. Contact to toi@kuhp.kyoto-u.ac.ip. for permission to reprint and/or distribute.

CREATE-X: Trial Design

HER2-

Surgery

Pathology Non-pCR or node +

Control: Standard therapy

Standard therapy + Capecitabine

Stratification factors: ER, Age, NAC, ypN, 5FU and institution Standard therapy: HR+: Hormone therapy

HR-: No further systemic treatment

Capecitabine Therapy

Capecitabine (X): 2,500 mg/m²/day, po, day 1-14 Repeat every 3 weeks for 8 cycles

According to the safety interim analysis of the first 50 pts treated with 6 cycles of X, the IDMC recommended extending X to 8 cycles.

Key Inclusion Criteria

Age: 20-74

ECOG PS 0 or 1

- Stage I IIIB
- HER2-negative (IHC 0 or 1 and/or FISH negative)
- Non-pCR and/or node-positive after NAC with anthracycline (A) and taxane (T), A-containing or TC (docetaxel, cyclophosphamide)
- · No prior treatment with oral FU
- Adequate organ functions
- No toxicity reactions of grade 2 or higher carried over from NAC
- · Written informed consent

Patients & Tumor Characteristics (2)

		Capecitabine (N=440)	Control (N=445)
Neoadjuvant	A containing*	18 (4.1)	16 (3.6)
chemotherapy	A-T (sequential)*	357 (81.1)	371 (83.4)
	AT (concurrent)*	60 (13.6)	53 (11.9)
	TC*	5 (1.1)	3 (0.7)
5FU containing	Yes	260 (59.1)	269 (60.4)
regimen	No	180 (40.9)	176 (39.6)
Adjuvant endocrine	Yes for premenopausal	187 (42.5)	178 (40.0)
therapy	Yes for postmenopausal	108 (24.5)	127 (28.5)
	No	145 (33.0)	140 (31.5)
Radiation therapy	Yes	318 (72.3)	327 (73.5)
	No	122 (27.7)	118 (26.5)

 $^{{}^*\!}A: Anthracycline\ containing, T: Taxane\ (Docetaxel\ or\ Paclitaxel), TC: Docetaxel\ +\ Cyclophosphamide$

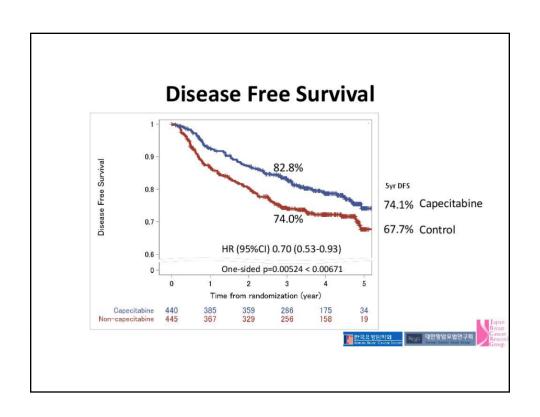
Compliance of capecitabine

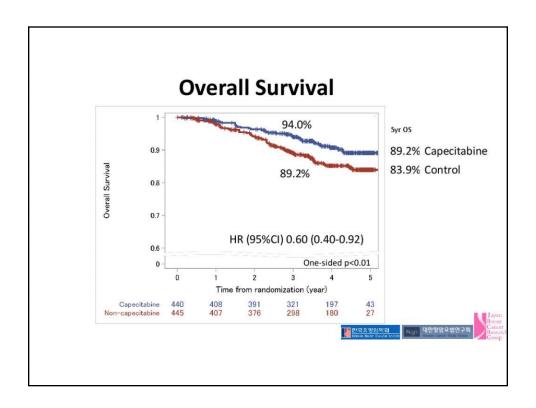
Total (N=439)	Cases planned for 6 cycles (N=159)	Cases planned for 8 cycles (N=280)
Completion	92 (58.0)	106 (37.9)
Reduction	38 (23.9)	104 (37.1)
Discontinued	29 (18.2)	70 (25.0)
RDI* (%) Mean (SD)	87.9 (21.6)	79.1 (29.0)

^{*} RDI: Relative dose intensity

Safety

≥G3 (N, %)	Capecitabine arm (N=440)	Control arm (N=445)
Neutropenia *	29 (6.6)	7 (1.6)
Diarrhea *	13 (3.0)	2 (0.4)


- significantly higher in the capecitabine arm (Neutropenia: p<0.001, Diarrhea: p=0.004)
- All grade incidence is significantly higher in the capecitabine arm as below,


Leucopenia, Neutropenia, Anemia, Thrombocytopenia Elevated AST/ALT, Total bilirubin Appetite loss, Diarrhea, Stomatitis and Fatigue

Ohtani S, et al. SABCS2013#P3-12-03

Capecitabine administrated Hand-Foot-Syndrome (N=440)

Grade 0 122 (27.7) Grade 1 160 (36.4) Grade 2 110 (25.0) Grade 3 48 (10.9) Grade 1-3 318 (72.3)

Conclusions

- After standard neoadjuvant chemotherapy containing A and/or T, postoperative adjuvant use of capecitabine improved DFS significantly in HER2-negative primary breast cancer patients with pathologically proven residual invasive disease.
- OS was significantly improved by capecitabine adjuvant therapy for non-pCR or node-positive patients after NAC.
- ➤ The balance of benefit and toxicity would favor the use of capecitabine in the post-NAC situation, but prediction for the therapeutic benefit needs to be investigated further.
- > The cost-effectiveness analysis will be carried out.

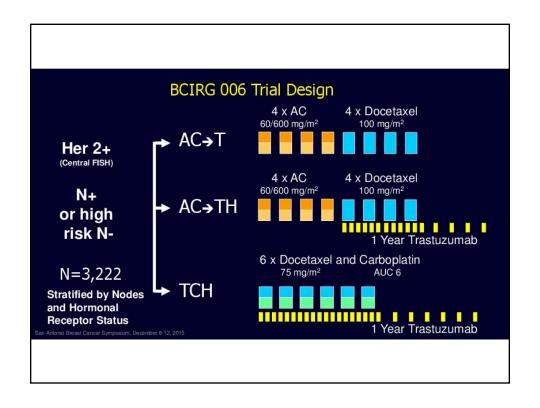
How does this change clinical practice?

- If the results hold up, it provides phase III data to consider "maintenance" chemotherapy in those who fail to achieve a pCR.
- Data stratified by hormone receptor status was not presented.
- The dose and schedule appeared better tolerated in this Asian population, perhaps due to differences in pharmacogenomics?

Objectives

To present "clinically relevant" abstracts in:

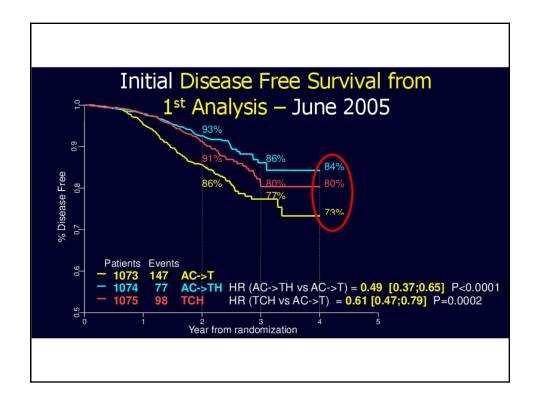
- Hormone receptor positive and HER2 negative breast cancer
- 2. HER-2 positive breast cancer
- 3. Triple negative breast cancer

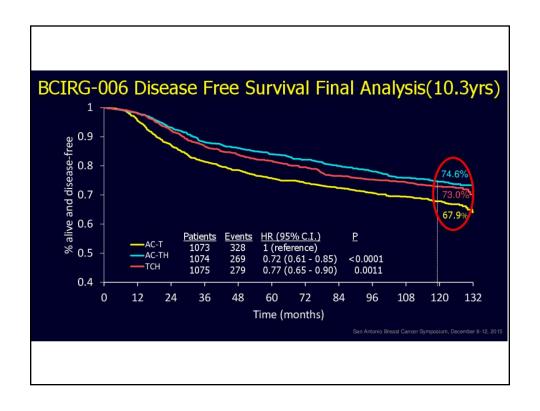

BCIRG 006 Phase III Trial Comparing AC→T with AC→TH and with TCH in the Adjuvant Treatment of HER2-Amplified Early Breast Cancer Patients:

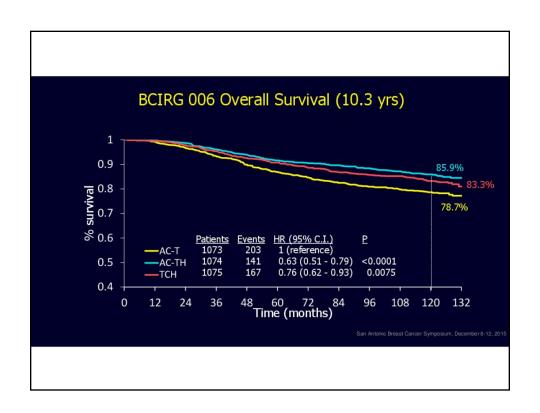
10-year Follow-up analysis

Slamon D, Eiermann W, Robert N, Giermerk J, Martin M, Jasiowka M, Mackey J, Chan A, Liu M, , Pinter T, Valero V, Falkson C, Fornander T, Shiftan T, Bensfia S, Hitier S, Xu N, Bee-Munteanu V, Drevot P, Press M, Crown J, on behalf of the BCIRG 006 Investigators.

Study sponsored by sanofi Support from Genentech

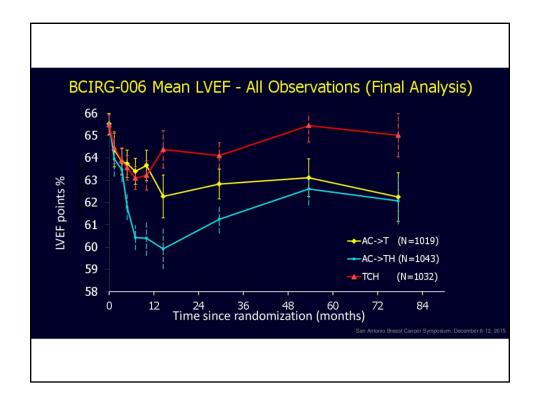

San Antonio Breast Cancer Symposium, December 8-12, 2015




BCIRG 006 Crossover

- 33 patients (3.1%) of the 1,073 randomized to the control arm (AC→T) crossed-over to receive trastuzumab
- 96.9 % of the control arm enrollment remained intact for long-term DFS, OS and safety comparisons

San Antonio Breast Cancer Symposium, December 8-12, 201


BCIRG 006 Grade 3/4 Hematological Toxic	exicit	Т	ogical	tol	ema	4	3/	rade	G	006	BCIRG
---	--------	---	--------	-----	-----	---	----	------	---	-----	-------

	AC→T n=1,050	AC→TH n=1,068	TCH n=1,056
	%	%	%
Neutropenia	63.5	71.6	66.2*
Leucopenia	51.9	60.4	48.4*
Febrile neutropenia	9.3	11.0	9.6
Neutropenic infection	11.9	12.6	11.2
Anemia	2.3	3.0*	5.4
Thrombocy to penia	1.6	2.1*	6.1
Acute Leukemias: #(%)	6 (0.6)	2 (0.1)	1 (0.1**)

Yellow=*Statistically significant less events

**B-cell lymphoma developed 24 months after TCH in this pt and represented her ITT DFS event. The acute leukemia occurred 20 months after rx with CHOP for the B cell lymphoma.

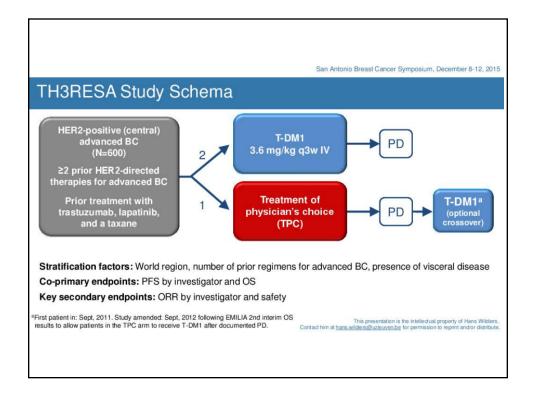
San Antonio Breast Cancer Symposium, December 8-12, 2015

Trastuzumab emtansine (T-DM1) improves overall survival versus treatment of physician's choice in patients with previously treated HER2-positive metastatic breast cancer: final overall survival results from the phase 3 TH3RESA study

Hans Wildiers,¹ Sung-Bae Kim,² Antonio Gonzalez Martin,³ Patricia M. LoRusso,⁴ Jean-Marc Ferrero,⁵ Tanja Badovinac-Crnjevic,⁶ Ron Yu,⁷ Melanie Smitt,⁷ Ian E. Krop⁸

¹University Hospitals Leuven, Leuven, Belgium; ²Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; ³MD Anderson Cancer Center, Madrid, Spain; ⁴ Yale Cancer Center, Yale University Medical Center, New Haven, CT, USA; ⁵Department of Medical Oncology, Centre Antoine Lacassagne, Nice, France; ⁶F. Hoffmann-La Roche, Ltd, Basel, Switzerland; ⁷Genentech, Inc, South San Francisco, CA, USA; ⁸Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA

This presentation is the intellectual property of Hans Wildiers Contact him at hans.wildiers@uzleuven.be for permission to reprint and/or distribute


San Antonio Breast Cancer Symposium, December 8-12, 2015

T-DM1: Background

- Antibody-drug conjugate composed of the HER2-targeted humanized monoclonal antibody trastuzumab stably linked to the cytotoxic microtubule inhibitor DM1
- Approved as a single-agent for treatment of patients with HER2-positive MBC who previously received trastuzumab and a taxane, separately or in combination
 - Patients should have received prior therapy for MBC, or
 - Developed disease recurrence during or within 6 months of completing adjuvant therapy
- Approval based on phase 3 EMILIA study of T-DM1 vs lapatinib + capecitabine¹
 - Significantly longer PFS (median 9.6 vs 6.4 months; HR=0.65, P<0.001)
 - Significantly longer OS (median 30.9 vs 25.1 months; HR=0.68, P<0.001)

Verma S, et al. N Engl J Med 2012.

This presentation is the intellectual property of Hans Wildiers. Contact him at hans.wildiers@uzleuven.be for permission to reprint and/or distribute.

Statistical Considerations

Statistical Analysis

- Overall type I error rate (5%) is split asymmetrically between the two co-primary endpoints:
 - 0.5% allocated to PFS
 - 4.5% allocated to OS

Primary PFS Analysis¹ (cut-off date February 11, 2013)

- PFS (investigator-assessed)
 - HR=0.528, P<0.0001
 - Median PFS 3.3 months with TPC vs.
 6.2 months with T-DM1
- · First interim OS analysis
 - 105 (21%) of 492 targeted events
 - Trend for improved OS but stopping boundary not crossed

¹Krop IE, et al. Lancet Oncol 2014.

Second Interim OS Analysis (cut-off date February 13, 2015)

- Planned: 330 (67%) of 492 targeted events
- Actual: 338 (69%) events; median follow-up 30.5 months
- Pre-specified stopping boundary HR<0.748 or P<0.012
- If stopping boundary is crossed, this will be the final OS analysis

This presentation is the intellectual property of Hans Wildiers. Contact him at https://hans.wildiers@uzleuven.be for permission to reprint and/or distribute.

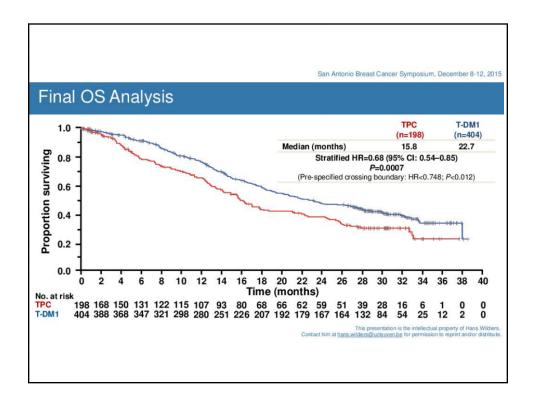
Treatment of Physician's Choice Regimen

TPC treatment regimen	TPC (n=184 ^a)
Combination with HER2-directed agent, %	83.2
Chemotherapy ^b + trastuzumab	68.5
Lapatinib + trastuzumab	10.3 Trastuzumab-
Hormonal therapy + trastuzumab	1.6
Chemotherapy ^b + lapatinib	2.7
Single-agent chemotherapy, ^b %	16.8

alncludes patients who received study treatment. Excludes one patient who was randomized to the TPC arm but received two cycles of T-DM1 by mistake.

bThe most common chemotherapy agents used were vinorelbine, gemcitabine, eribulin, paclitaxel, and docetaxel.

San Antonio Breast Cancer Symposium, December 8-12, 2015


Patient Disposition and Post-Progression Therapy

	TPC (n=198)	T-DM1 (n=404)
Discontinued study, %	79.3	67.1
Reasons for study discontinuation, % Death Withdrawal by patient Physician's decision Other	59.1 15.7 2.0 2.5	54.7 8.2 0.7 3.5
Post-progression therapy, ^a % Any HER2-directed T-DM1 as crossover treatment T-DM1 as non-study treatment	62.6 57.1 44.9 6.6	46.8 33.9 n/a 1.2
Other Chemotherapy Hormonal Other	26.3 34.3 7.6 3.0	33.7 42.1 10.1 5.2

^aPatients may have received post-progression therapy that was not recorded on the eCRF.

This presentation is the intellectual property of Hans Wildiers

Contact him at https://hans.wildiers@uzeluven.be for permission to reprint and/or distribute

Conclusions

- T-DM1 demonstrated a clinically meaningful and statistically significant improvement in OS compared to TPC in patients with HER2-positive MBC previously treated with taxane, trastuzumab, and lapatinib
 - Median OS improved by 6.9 months from 15.8 months (TPC) to 22.7 months (T-DM1)
 - Stratified HR=0.68, P=0.0007
 - Survival benefit despite substantial crossover
 - ~80% of patients in TPC arm received trastuzumab-containing regimens
- Despite longer treatment duration relative to control, T-DM1 had a favorable safety profile which was consistent with prior studies
- These data further solidify the role of T-DM1 in the treatment of previously treated HER2-positive advanced breast cancer

This presentation is the intellectual property of Hans Wildiers

CIHR IRSC

MANTICORE 101: <u>M</u>ultidisciplinary <u>Approach</u> to <u>N</u>ovel <u>T</u>herapies <u>In Cardio-Oncology RE</u>search

Pituskin E, Mackey JR, Koshman S, Jassal D, Pitz M, Haykowsky MJ, Thompson R, Oudit G, Ezekowitz J, Paterson I.

University of Alberta, Edmonton, AB, Canada; Cross Cancer Institute, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, Edmonton, AB, Canada; University of Manitoba, Winnipeg, MB, Canada; University of Texas, Arlington, TX.

San Antonio Breast Cancer Symposium, December 8-12, 2015

San Antonio Breast Cancer Symposium, December 8-12, 2015 Background Trastuzumab related LV remodeling and dysfunction on Cardiac MRI · Trastuzumab related cardiac toxicity is frequent and potentially lethal • Left ventricular (LV) dysfunction ~20% · Heart failure ~1-5% · Cardiac function (LVEF) monitored Q3 months during trastuzumab Rx · 3-D imaging preferred (e.g. Cardiac MRI) · No effective prevention strategies to date · ACE inhibitors and beta blockers EDV recommended for established cardiac toxicity Haykowsky et al. Clin Cancer Res 2009. 200 CIHR This presentation is the intellectual property of the author/presenter. Contact <u>Pituskin@ualberta.ca</u> for permission to reprint and/or distribute

MANTICORE: Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research

Primary Aim:


 Determine if ACE inhibitors (ACEI) or beta blockers (BB) prevent LV remodeling in HER2+ EBC patients receiving trastuzumab-based chemotherapy

Design:

 Three arm, 1:1:1 randomization, placebo controlled, double blinded, multicentre trial

Pituskin et al. BMC Cancer 2011.

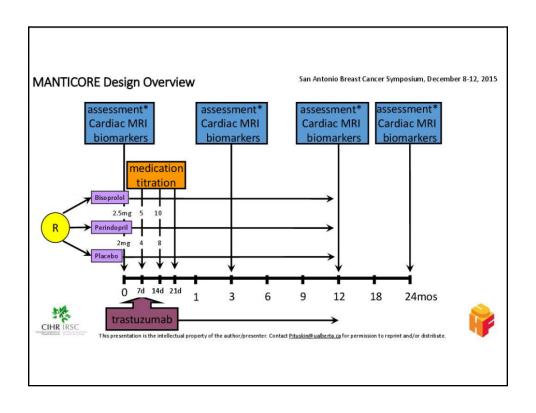
San Antonio Breast Cancer Symposium, December 8-12, 2015

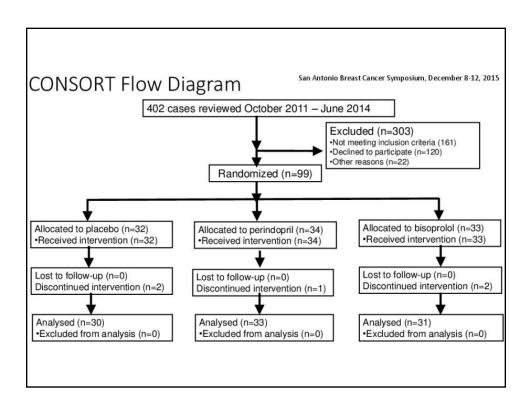
MANTICORE: Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research

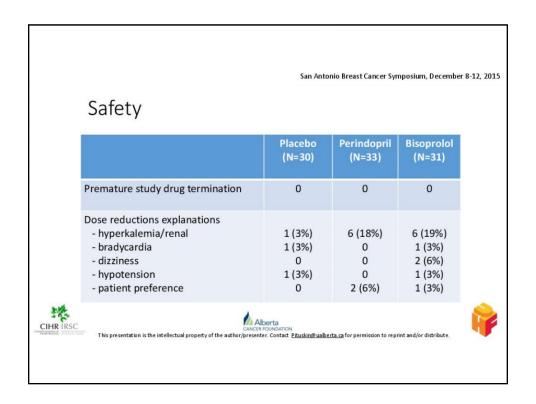
Primary Outcome:

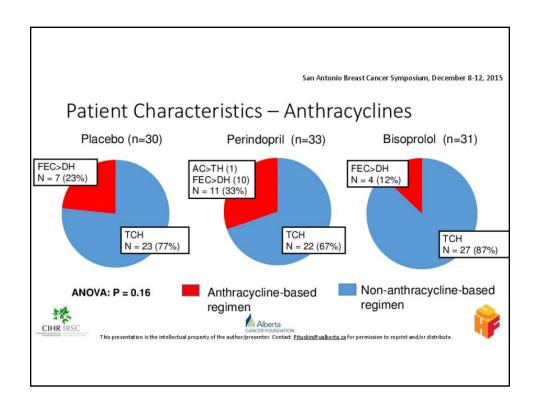
- Change in indexed left ventricular end-diastolic volume (Δ LVEDVi) on cardiac MRI following 17 cycles of trastuzumab

Secondary Outcomes:


- Change in left ventricular ejection fraction (ΔLVEF) on cardiac MRI following 17 cycles of trastuzumab
- · Safety and tolerability of ACEI and BB in HER2+ EBC patients




Pituskin et al. BMC Cancer



This presentation is the intellectual property of the author/presenter. Contact <u>Pituskin@ualberta.ca</u> for permission to reprint and/or distribut

Results – Cardiac MRI

	Placebo (N=30)	Perindopril (N=33)	Bisoprolol (N=31)	ANOVA P value
Pre LVEDVi (ml/m²)	76 ± 13*	67 ± 14	69 ± 10	< 0.01
Post LVEDVi (ml/m²)	79 ± 12	74 ± 16 [†]	76 ± 14 ⁺	0.27
Δ LVEDVi from baseline	+4 ± 11	+7 ± 14	+8 ± 9	0.36
Pre LVEF (%)	61 ± 5	62 ± 5	62 ± 4	0.55
Post LVEF (%)	56 ± 4*†	59 ± 6 [†]	61 ± 4	0.0001
Δ LVEF from baseline	-5 ± 5	-3 ± 4	-1 ± 5*	0.001
Trastuzumab interruptions due to drop in LVEF	8*	1	1	0.002

* P < 0.05 compared to other groups, † P < 0.05 from baseline

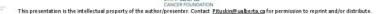
This presentation is the intellectual property of the author/presenter. Contact <u>Pituskin@ ualberta.ca</u> for permission to reprint and/or distribute.

San Antonio Breast Cancer Symposium, December 8-12, 2015

Multivariate analysis for prediction of Δ LVEF

	Unstandardized Beta	Standard Error	95% Confidence Interval of Beta		Significance
Age	0.098	0.050	-0.002	0.199	0.199
Baseline LVEF	-0.494	0.096	-0.684	-0.303	<0.001
Trastuzumab dose	0.68	0.054	-0.04	0.175	0.213
Anthracyclines	0.268	1.018	-1.755	2.291	0.793
Left Radiotx	0.952	0.858	-0.753	2.657	0.270
Perindopril	2.615	1.018	0.557	4.673	0.013
Bisoprolol	4.735	1.035	2.668	6.802	<0.001

ANOVA F-test = 7.986



26

Study Strengths and Limitations

- First effective intervention for trastuzumab-associated LV dysfunction
- · RCT, placebo controlled, multicenter design
- · Homogeneous patient population and uniform follow-up
- · Ease and safety of intervention
- · Underpowered for CHF events
- · Negative for primary end-point of preventing LV remodeling
 - · Importance of extended follow-up

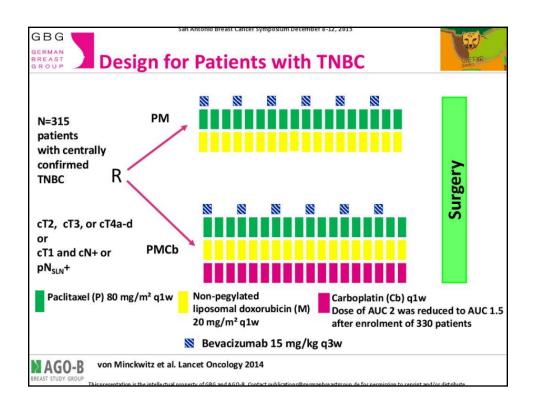
San Antonio Breast Cancer Symposium, December 8-12, 2015

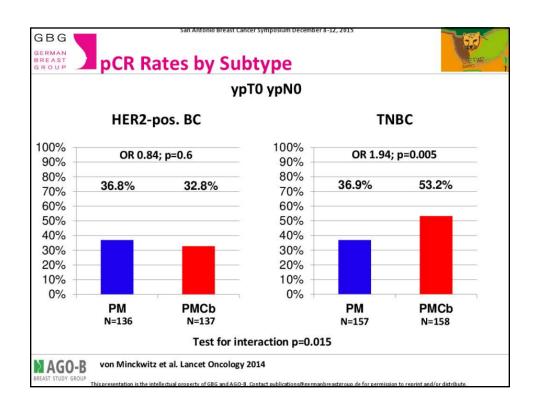
Conclusions

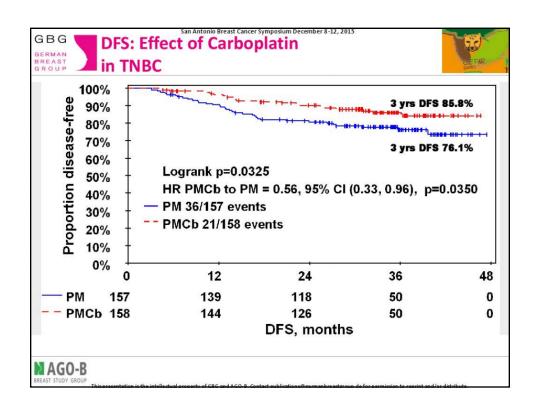
- Prophylactic use of standard heart failure pharmacotherapy protects against trastuzumab associated declines in LVEF
 - · reduces trastuzumab interruptions due to LV dysfunction
- Trastuzumab associated LV remodeling not prevented by ACE inhibitors or beta blockers
- Routine ACE inhibitors and beta blockers appear safe in HER2 overexpressing early breast cancer patients treated with trastuzumab

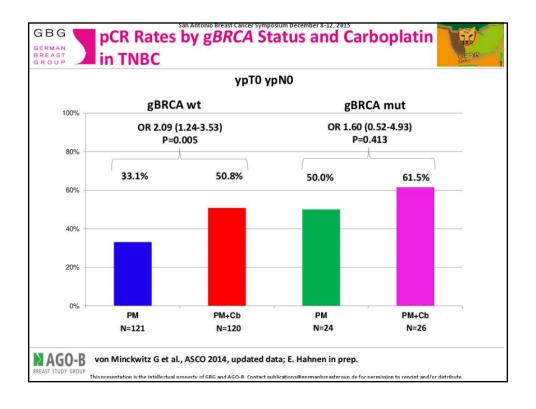
How do these studies change clinical practice?

- Long-term follow up in BCIRG-006 confirms the DFS and OS benefit of trastuzumab in early stage HER2 positive breast cancer and provides data on 10-year risk of secondary leukemia and cardiac events.
- TH3RESA provides additional data for TDM-1 in patients with MBC previously treated with trastuzumab and lapatinib.
- It is too early to prophylactically treat all early stage patients with B-blockers or ACE inhibitors.

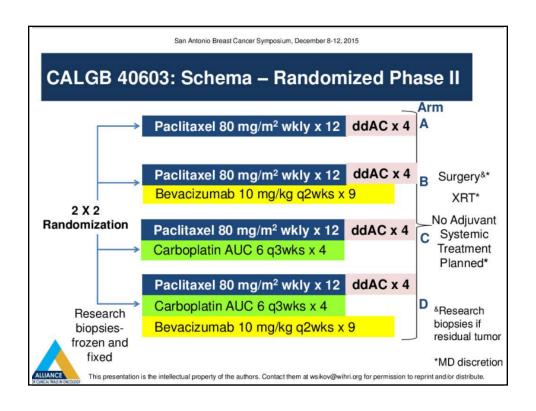

Objectives


To present "clinically relevant" abstracts in:


- Hormone receptor positive and HER2 negative breast cancer
- 2. HER-2 positive breast cancer
- 3. Triple negative breast cancer



- Carboplatin improved DFS substantially (HR=0.56, p=0.035) in patients with TNBC; but showed no effect in patients with HER2positive BC (HR 1.33, p=0.372; test for interaction p=0.046).
- DFS effect of carboplatin was correctly predicted by its extensive effect on pCR, supporting surrogacy of pCR (comparable to NOAH).
- Unexpectedly, a strong positive effect of carboplatin on pCR and DFS was observed in patients with wt gBRCA.
- Favorable prognosis after pCR was confirmed and is independent of gBRCA status.
- In summary, GeparSixto supports the use of carboplatin as part of neoadjuvant treatments in all patients with TNBC.



Event-free and overall survival following neoadjuvant weekly paclitaxel and dose-dense AC +/- carboplatin and/or bevacizumab in triple-negative breast cancer: outcomes from CALGB 40603 (Alliance)

William M Sikov, Donald A Berry, Charles M Perou, Baljit Singh,
Constance T Cirrincione, Sara M Tolaney, George Somlo,
Elisa R Port, Rubina Qamar, Keren Sturtz, Eleftherios Mamounas,
Mehra Golshan, Jennifer R Bellon, Deborah Collyar, Olwen M Hahn,
Lisa A Carey, Clifford A Hudis, Eric P Winer for the CALGB/Alliance

This presentation is the intellectual property of the authors. Contact them at wsikov@wihri.org for permission to reprint and/or distribute

San Antonio Breast Cancer Symposium - Cancer Therapy and Research Center at UT Health Science Center December 8-12, 2015 CALGB 40603 - pCR Results by factor pCR Breast ypT0/is (%, 95% CI) Overall Carbo No Carbo OR p-value 1.76 60 (54-66) 46 (40-53) 0.0018 Bev No Bev OR 53 (49-58) p-value 59 (52-65) 48 (41-54) 1.58 0.0089 pCR Breast/Axilla ypT0/is ypN0 (%, 95% CI) Overall Carbo No Carbo OR p-value 54 (48-61) 41 (35-48) 1.71 0.0029 48 (43-53) Bev No Bev OR p-value 1.29 0.0570 52 (45-58) 44 (38-51) Sikov et al, J Clin Oncol 2015 This presentation is the intellectual property of William Sikov, MD. Contact at wsikov@wihri.org for permission to reprint or distribute

San Antonio Breast Cancer Symposium, December 8-12, 2015

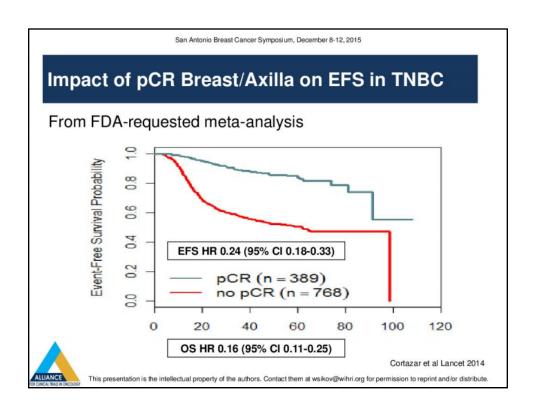
CALGB 40603 - Endpoints

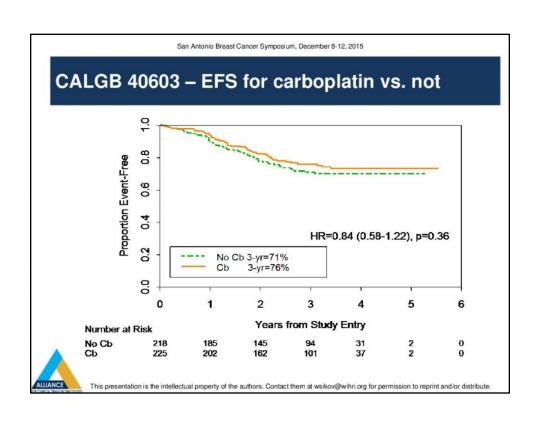
Presented SABCS 2013

Primary and secondary endpoints

- pCR Breast by factor (+/- carboplatin, bevacizumab)
- pCR Breast/Axilla by factor
- Treatment delivery, toxicities and adverse events

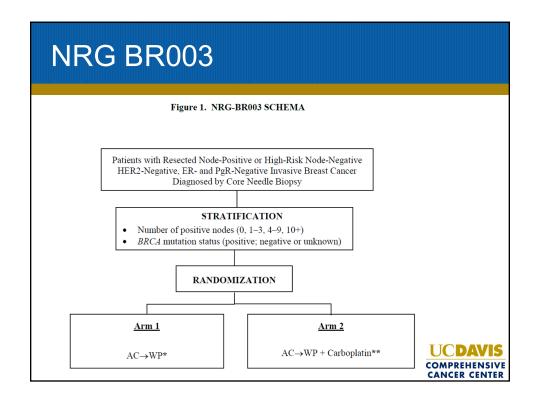
Presented SABCS 2014

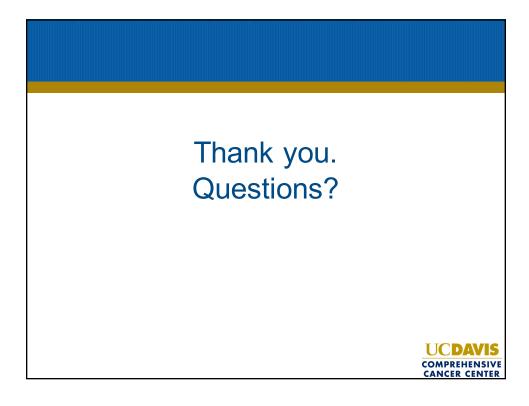

- · pCR rates in basal-like vs. non-basal-like
- · Impact of select biomarkers on pCR


Being presented today

- · EFS and OS by pathologic response, including RCB
- EFS and OS by factor preplanned analyses, though study was underpowered to determine benefit

This presentation is the intellectual property of the authors. Contact them at wsikov@wihri.org for permission to reprint and/or distribute.





How does this change clinical practice?

- Both of these trials were underpowered to determine DFS and OS.
- It remains unclear whether pCR is a reliable predictor of long-term DFS and OS.

