

UCDAVIS COMPREHENSIVE CANCER CENTER Helen Diller Family Comprehensive Cancer Center Association of Northern California Oncologists

Clinical Case Vignettes

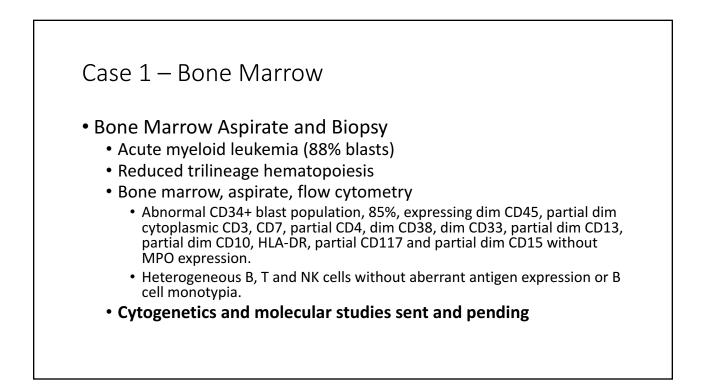
Association of Northern California Oncologists (ANCO) Hematologic Malignancies Update

September 9, 2017

Brian Sworder MD, PhD, fellow (Stanford) bsworder@stanford.edu

Disclosures

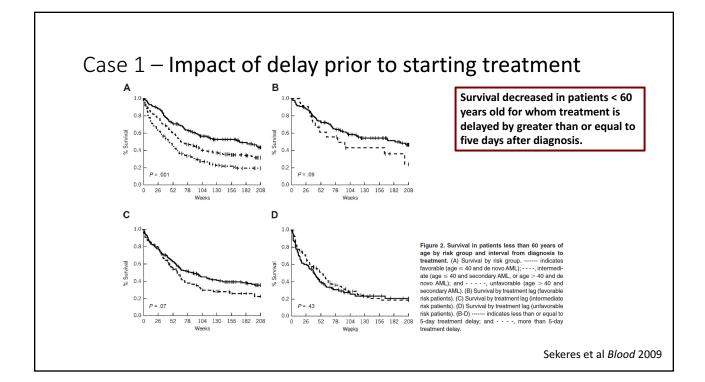
- Nothing to disclose
- I have attempted to highlight "off-label" use if applicable in cases

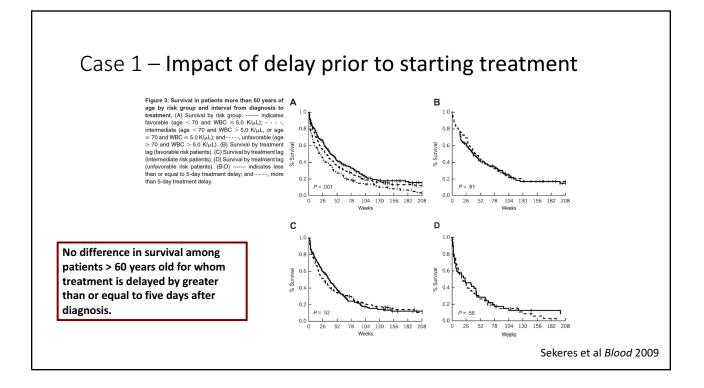

Outline of Clinical Case Vignettes

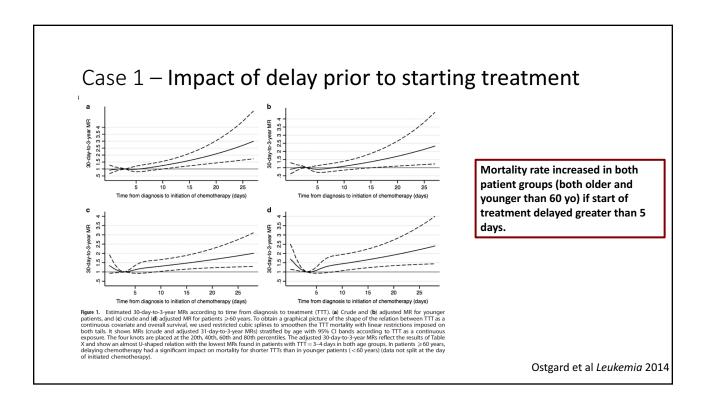
- 2 clinical cases with multiple scenarios highlighting common treatment and management issues in hematologic malignancies
- Take away "learning points" highlighted in each case
- Audience questions welcome at any time, expert opinion on each case
- Feel free to discuss your own variations of cases with our experts

Case 1 – 62 year old female

- HPI: Initially presents to her primary care physician complaining of progressive dyspnea; found to be severely anemic and thrombocytopenic. She is admitted for transfusion and hematology is consulted.
- Past Medical History: No significant past medical history
- Past Surgical History: Tonsillectomy
- Social History: Works actively as a school teacher. No smoking. No EtOH.
- Family History: Father and grandfather had head and neck cancer, both smokers. Sister with cervical cancer.
- Meds: None
- Exam Fit woman in no acute distress. Essentially unremarkable. Excellent performance status.

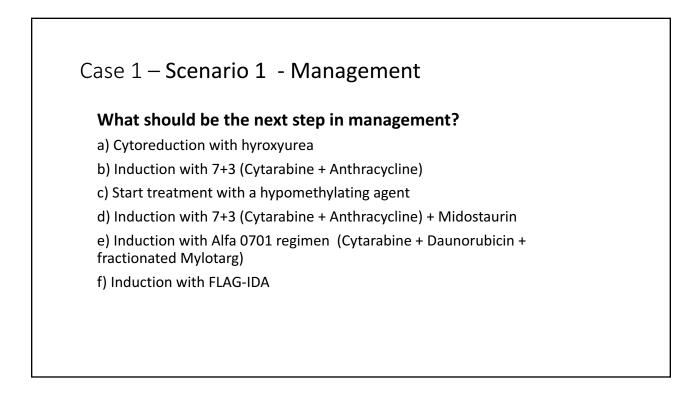

Case 1 – Initial Labs 25 4.9 138 103 54 95 8.8 4.2 30 0.86 MCV - 96.5 AST - 21 ANC - 1400 ALT - 24 Segs - 11% Alk Phos – 70 Bands – 5% T. Bili – 0.8 Lymph – 17% Mono – 3% LDH - 261 Blasts - 64% Smear: Numerous blasts, no hemolysis

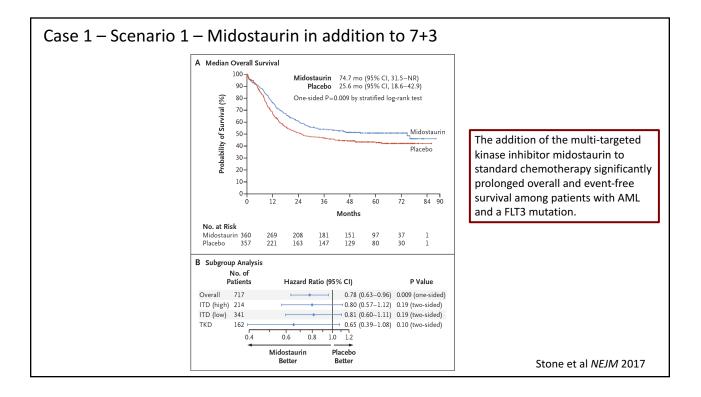


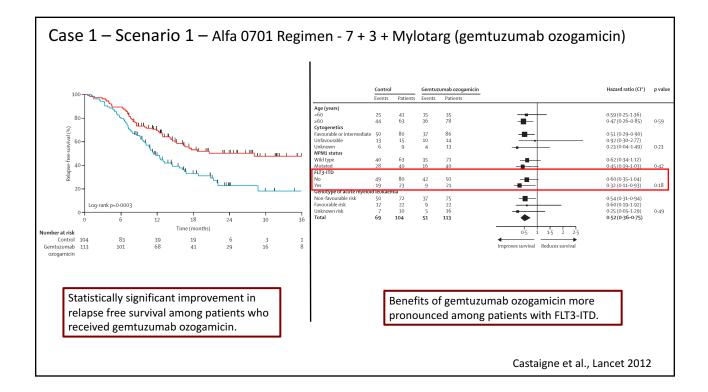

Case 1 – Initial Management

What should be the next step in management?

- a) Cytoreduction with hyroxyurea
- b) Immediately start induction chemotherapy with 7+3 (Cytarabine + Anthracycline)
- c) Start treatment with a hypomethylating agent
- d) Send rapid sequencing panel for *FLT3* and *NPM1* mutations; await start of treatment until this and cytogenetics return.
- e) Next generation sequencing myeloid gene panel






Case 1 – Recommendations for New AML Diagnosis Recommended initial work-up for a patient with new or suspected diagnosis of AML Bone marrow biopsy, send for: Morphologic analysis Flow cytometry Cytogenetics +/- FISH for rapid turnaround. (STAT t15:17 if APL is suspected) Next generation myeloid sequencing panel (Stanford, OHSU, GenPath). Typically includes 50 – 80 genes recurrent mutated in AML and other myeloid disorders. "AML Prognosis panel" (FLT3 and NPM1 mutations) for rapid turnaround. Can be sent off the peripheral blood if there is adequate circulating disease (typically greater than 20% blasts) If transfer to another hospital pending, recommend close observation with labs (CBC, CMP) and possible transfusion every 2-3 days.

Case	1 – Scenario 1			
• Cyto	emale with new dia genetics return: 46,> L Prognosis Assay" re	(X[20] – Norm		
	Component Results	turns.		
	Component	1 C 1		
	component	Value	Ref Range & Units	Status
	Clinical Indication Prognostic test for patients with Acute Myeloid Leukemia (AML)	Value	Ref Range & Units	Status Final
	Clinical Indication Prognostic test for patients with		Ref Range & Units Negative	
	Clinical Indication Prognostic test for patients with Acute Myeloid Leukemia (AML) FLT3, Blood Positive for FLT3 internal tandem duplication		-	Final

CCN National Comprehe Cancer Network®	nsive NCCN Guidelines Version 3.201 Acute Myeloid Leukemia	7 <u>NCCN Guidelines Inde</u> <u>Table of Conten</u> <u>Discussion</u>
	RISK STATUS BASED ON VALIDATED CYTOGENETICS AN	ID MOLECULAR ABNORMALITIES ¹
RISK STATUS	CYTOGENETICS	MOLECULAR ABNORMALITIES
Favorable-risk	Core binding factor: inv(16) ^{2,3,4} or t(16;16) ^{2,3,4} or t(8;21) ^{2,4} or t(15;17) ⁴	Normal cytogenetics: NPM1 mutation in the absence of FLT3-ITD or isolated biallelic (double) CEBPA mutation
Intermediate- risk	Normal cytogenetics +8 alone t(9;11) Other non-defined	Core binding factor with KIT mutation ²
Poor-risk	Complex (≥3 clonal chromosomal abnormalities) Monosomal karyotype -5, 5q-, -7, 7q- 11q23 - non t(9;11) inv(3), t(3;3) t(6;9) t(9;22) ⁵	Normal cytogenetics: with FLT3-ITD mutation ⁶ TP53 mutation

Case	1 – Scenario 2			
• 62	2yo female with	new diagr	nosis of AML	
	Cytogenetics retu AML Prognosis As			risomy 8
	Component Results			
	Component	Value	Ref Range & Units	Status
		h	Ref Range & Units	Status Final
	Component Clinical Indication Prognostic test for patients with	h)	Ref Range & Units Negative	
	Component Clinical Indication Prognostic test for patients with Acute Myeloid Leukemia (AML) FLT3, Blood Negative for FLT3 internal tand	h) lem		Final

Case 1 – Scenario 2

L

 76 gene next generation sequencing panel sent at time of diagnosis returns while patient is undergoing induction. It shows multiple mutations:

```
Gene: RUNX1

Mutation: p.H378fs*217 (2bp insertion frame shift mutation; Likely pathogenic)

Mutant Allele frequency: 36%

Gene: SF3B1

Mutation: p.G742D (Likely pathogenic)

Mutant Allele frequency: 29%

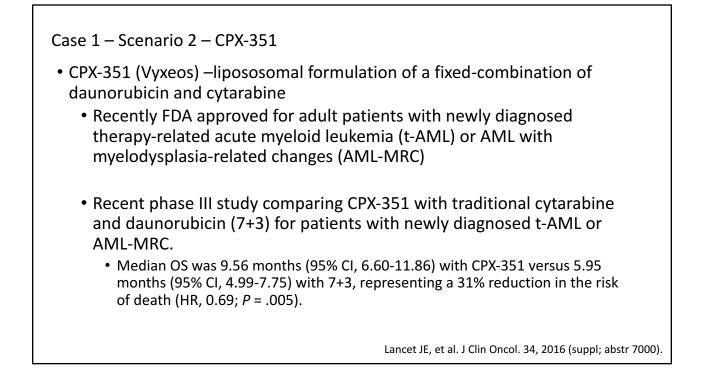
Variant ID: COSM145923

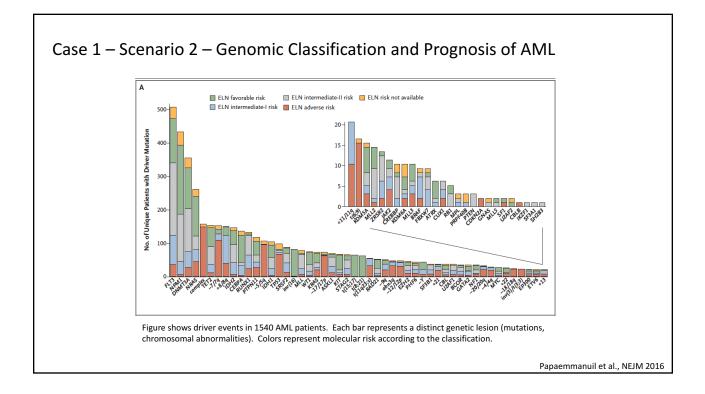
Gene: BCOR

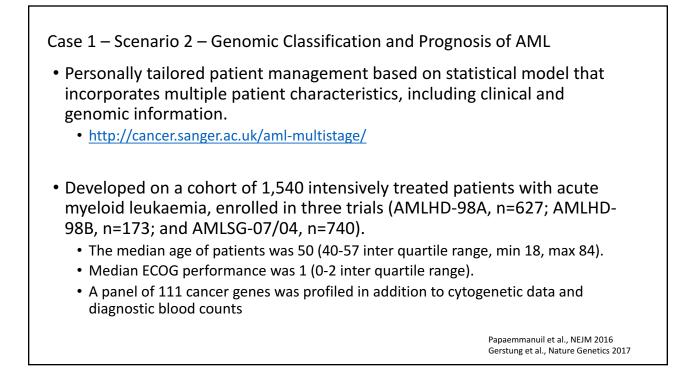
Mutation: Splice site (3' end of intron 10 splice site mutation; Likely pathogenic)

Mutant Allele frequency: 32%
```

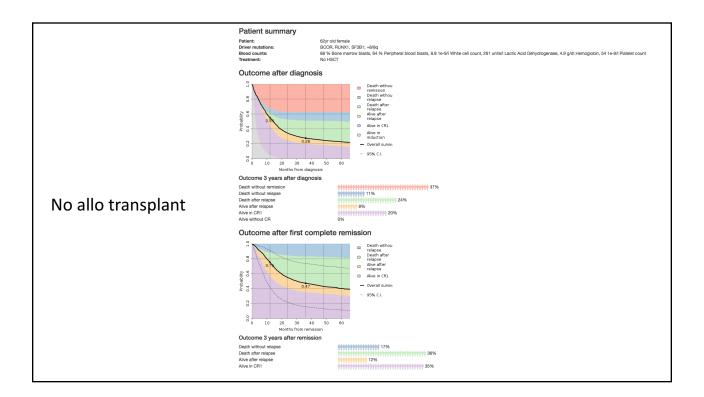
- Case 1 Scenario 2 Patient summary
 62 year old woman with AML

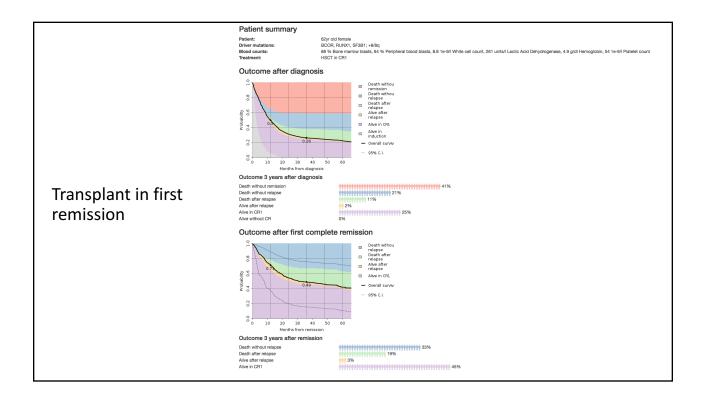

 Excellent performance status
 FLT3, NPM1, CEBPA mutations negative
 Cytogenetics show Trisomy 8
 Next generation sequencing panel shows BCOR, SF3B1 and Runx1 mutations

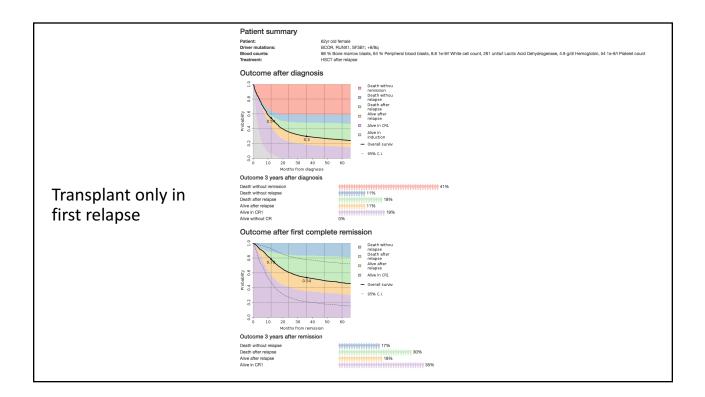

 What would be the most appropriate induction regimen, if any, for this patient?
 - Should this patient be transplanted in first remission?

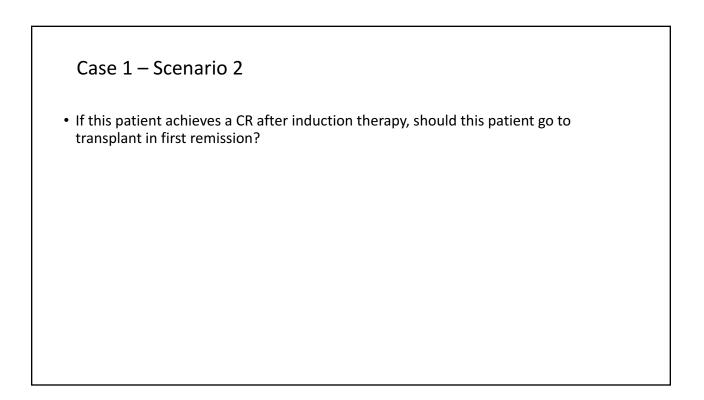

Case 1 – Scenario 2 – Runx1 Mutation

- Runx1 -
 - Transcriptional factor widely expressed in hematopoietic cells and important in hematopoiesis
 - Mutated in approx. 10% of cases of AML
 - Associated with decreased EFS, RFS and OS
 - Runx1 mutated AML is a new provisional WHO classification

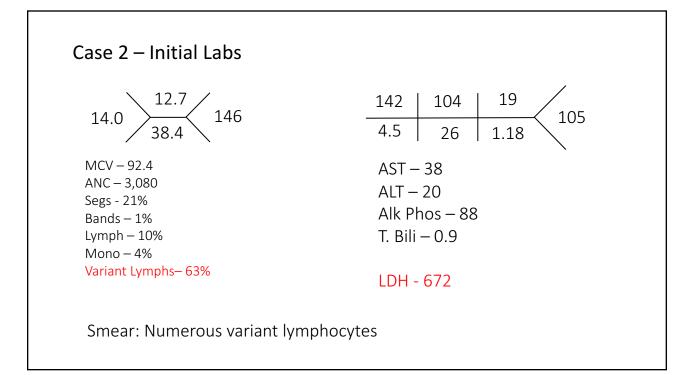

Entire cohort Clinical end point	$\frac{RUNX1^{mut}}{(n=245)}$	$RUNX1^{wt}$ (n = 2194)	Ρ
CR rate, %	48.4	68.1	< 0.0001
RD rate, % Missing, n	40.6 1	23.4 34	0.03
FS Median, mo (95% Cl) 5-year EFS (%)	2.0 (1.6–2.8) 9 (6–13)	8.2 (7.3–8.9) 24 (22–26)	< 0.0001
RFS Median, mo (95% Cl) 5-year RFS (%)	12.1 (10.4–14.7) 22 (16 to 30)		0.0007
OS Median, mo (95% Cl) 5-year OS (%)	13.3 (11.5–16.0) 22 (27–28)		< 0.0001
		Gaidzik et al,	, Leukemia

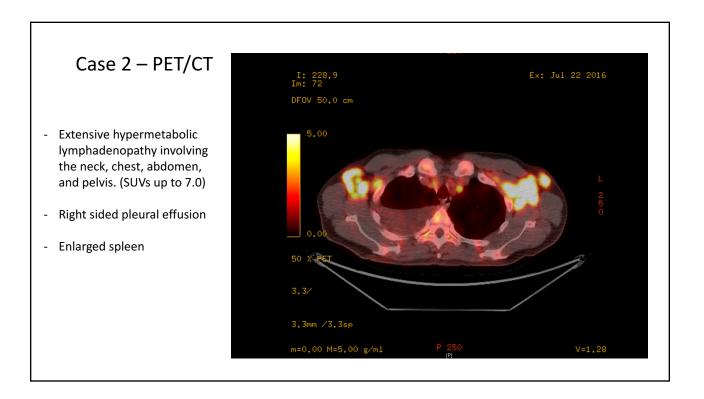






Select sample (or enter new patient's variables below) Please select	http://cancer.sanger.ac.uk/aml-multistage/
ta may be rounded for privacy reasons.	
	Enter patient's clinical variables including: age, performance
Enter/amend variables	status, gender, presenting WBC, Plt, HGB, LDH, peripheral blast
Clinical variables -	
White cell count (1e-9/l) [0.2-532.7]	%, marrow %, AML type, presence/absence of splenomegaly
Platelet count (1e-9/) [2-916]	
Peripheral blood blasts (%) [0-100]	
Bone marrow blasts (%) [0-100]	
Splenomegaly	Enter status of 111 known driver lesions (including mutations
○ absent ○ present ● N/A	and chromosomal abnormalities)
Hemoglobin (g/dl) [2.5-17.6]	
Driver mutations -	/
Treatment -	Choose at point patient would undergo allo stem cell
Allogeneic HSCT	transplant
o in first CR	
after relapse N/A	
	Model will generate survival curves based on information provided




Case 1 – Take Away Points

- The addition of the multi-targeted kinase inhibitor midostaurin to standard chemotherapy significantly prolonged overall and event-free survival among patients with AML and a FLT3 mutation.
- Gemtuzumab ozogamicin, in addition to standard induction chemotherapy has been shown to cause a statistically significant improvement in relapse free survival in patients with AML, and in subset analysis has shown further benefit in patients with FLT3 mutations.
- Molecular diagnostics should be sent at diagnosis of all patients with AML, as the results can inform both front line and relapse therapy, and strongly influence the decision to whether to proceed to allo transplant.
- Runx1 mutated AML is a new provisional WHO classification
- Models incorporating clinical, molecular and pathologic data are being developed toward the goal of precision tailored patient specific treatment strategies in AML.

Case 2 – 66 year old man with fatigue and lymphadenopathy

- HPI:
 - Patient initially develops 3-4 months of progressive dyspnea and experiences a 10 pound weight loss over 2 months.
 - Develops diffuse lymphadenopathy. CT scan performed by PCP reveals extensive LAD, right sided pleural effusion and splenomegaly.
- PMHx: BPH
- PSHx: None
- SocHx: Retired, active. Denies EtOH or TOB
- FamHx: No family history of malignancy
- Meds: None
- Physical Exam: Multiple enlarged lymph nodes in bilateral cervical, supraclavicular, axillary and inguinal chains. Spleen palpable finger breadths below costal margin

Case 2 – Work-up

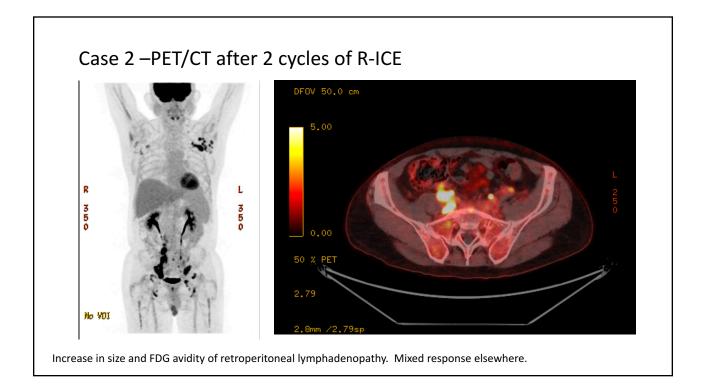
Inguinal Lymph Node Excisional Biopsy:

• Follicular lymphoma, predominately grade 1-2 with focal 3A morphology and high proliferation index.

Thoracentesis:

- Cytologic Diagnosis: Large cell lymphoma
- Ki67 60%
- CD20+, CD30+, BCL2+, CD10 neg
- FISH: BCL2 positive, BCL6 and c-myc negative

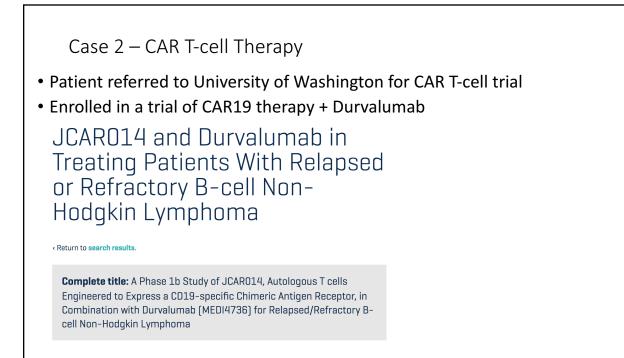
Bone Marrow Biopsy


• Involved by low grade follicular lymphoma. No evidence of large cell transformation in the marrow

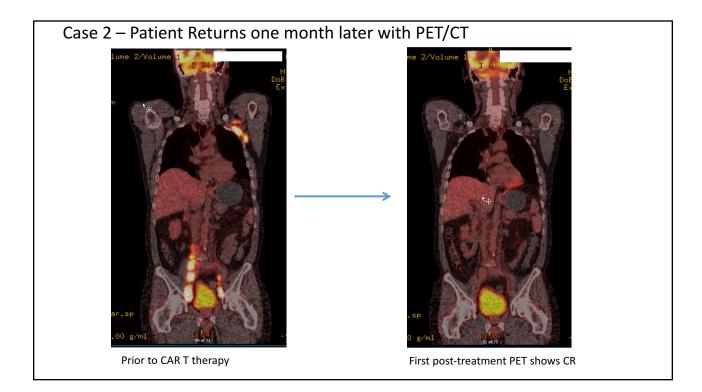
Diagnosis:

Stage IVE diffuse large B-cell lymphoma. Transformed from follicular lymphoma. IPI score 4/5 (LDH, stage, age, extranodal sites)

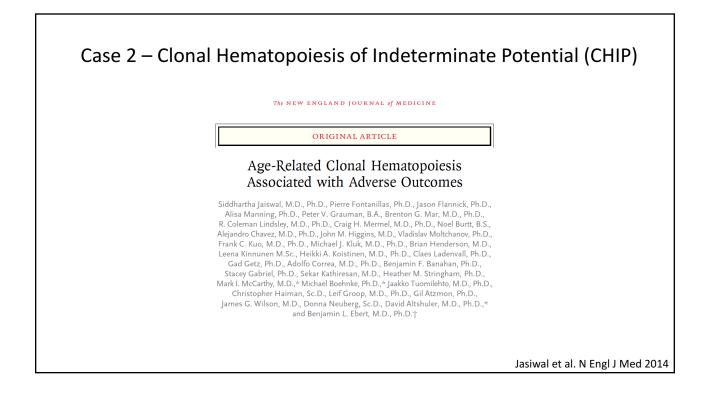
Case 2 – Initial Course


- Given advanced stage, high IPI and good functional status, patient started on DA-EPOCH-R
- PET/CT after cycle 4 shows decrease in size and metabolic activity of lymphadenopathy
- PET/CT after 6 cycles shows partial response to therapy with persistent FDG avidity in axillary, inguinal, iliac lymph node chains. Small persistent pleural effusion.
- · Repeat thoracentesis negative for lymphoma involvement
- Biopsy of axillary lymph node shows only grade 1-2 follicular lymphoma.
- Patient followed expectantly
- PET/CT performed 3 months later shows progressive disease involving axillary, pelvic, inguinal and cervical lymph node chains
- CT guided biopsy of deep pelvic lymph node reveals large cell lymphoma.
- Salvage chemotherapy with R-ICE started
- PET/CT performed after 2 cycles...

Case 2

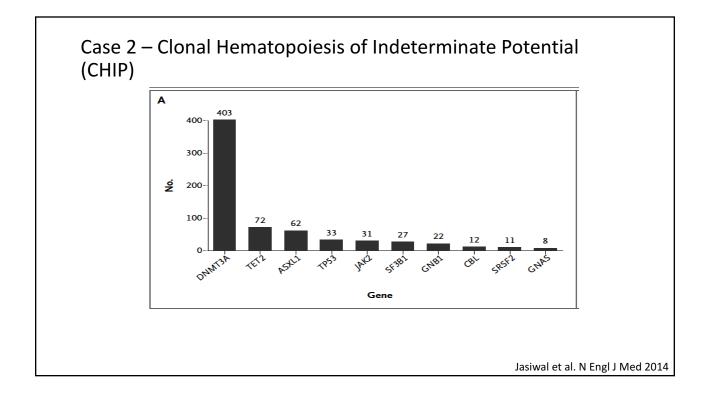

What should be the next course of therapy?

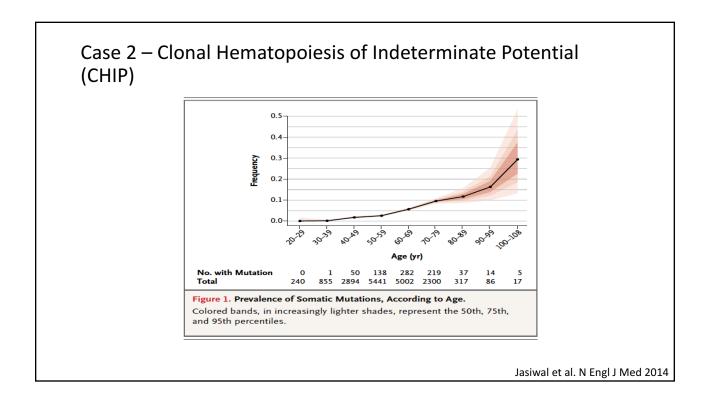
- a) Refer to BMT for autologous bone marrow transplant
- b) Change therapy to Ibrutinib
- c) Switch to an alternative salvage chemotherapy such as R-DHAP
- d) Refer to hospice
- e) Enroll into chimeric antigen receptor (CAR) T-cell trial


Case 2 – CAR T-cell Therapy

- Patient referred for CAR T-cell trial
- Enrolled in a trial of CAR19 therapy + Durvalumab
- Patients receive CAR19 cells on day 0 and Durvalumab IV on day 28, and then every 4 weeks for up to 10 doses in the absence of disease progression or unacceptable toxicity.
- Undergoes CAR T-cell therapy. Course complicated by fever related to cytokine release syndrome. Overall tolerates therapy well.

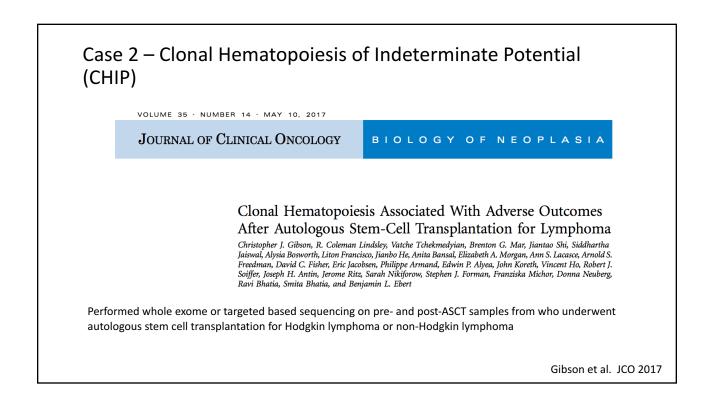
Case 2 – Scenario 2

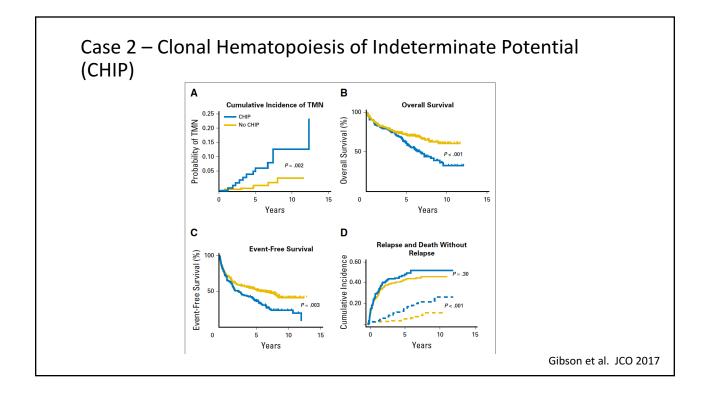

- Back to the initial presentation of this patient, who as you recall is is a 66 year old man who presented with progressive fatigue and lymphadenopathy, ultimately found to have Stage IVE DLBCL.
- **IF** a a next generation sequencing panel had been sent on his peripheral blood during his initial work-up and returned showing an ASXL1 mutation (frequently mutated gene found in myeloid disorders)
- Should this influence the choice of first line therapy for his DLBCL? Would it be reasonable to consider CAR T-cell therapy in the first line?



Case 2 – Clonal Hematopoiesis of Indeterminate Potential (CHIP)

- Jasiwal et al.
 - Analyzed whole-exome sequencing data from DNA in the peripheral blood cells of 17,182 persons who were selected without regard to hematologic characteristics
 - 15,801 were case patients and controls ascertained from 22 cohorts in type 2 diabetes association studies
 - 1381 were previously unsequenced participants in the Jackson Heart Study
- Looked for mutations in 160 recurrently mutated candidate genes in myeloid and lymphoid cancers


Jasiwal et al. N Engl J Med 2014



Case 2 – Clonal Hematopoiesis of Indeterminate Potential (CHIP)

Hematologic Cancer	Events/No. at Risk	Hazard Ratio (95% CI)	P Value
No mutation (referent)	11/3208		
IHS	10/2326		
MEC	1/882		
Mutation	5/134	11 (3.9–33)	<0.001
JHS	3/83 —	7.1 (2.0–25)	0.002
MEC	2/51	→ 36 (4.9–270)	<0.001
Mutation, VAF ≥0.10	5/57	49 (21–120)	< 0.001
JHS	3/34	21 (5.7–80)	< 0.001
MEC	2/23	→ 90 (29–280)	< 0.001
	1	10 100	
The presence of a sor	matic mutation was associate	d with an increase in the risk of hematologic ca	ncer

